Displaying 181 – 200 of 206

Showing per page

Multidimensional Models for Methodological Validation in Multifractal Analysis

R. Lopes, I. Bhouri, S. Maouche, P. Dubois, M. H. Bedoui, N. Betrouni (2008)

Mathematical Modelling of Natural Phenomena

Multifractal analysis is known as a useful tool in signal analysis. However, the methods are often used without methodological validation. In this study, we present multidimensional models in order to validate multifractal analysis methods.

Multidimensional self-affine sets: non-empty interior and the set of uniqueness

Kevin G. Hare, Nikita Sidorov (2015)

Studia Mathematica

Let M be a d × d real contracting matrix. We consider the self-affine iterated function system Mv-u, Mv+u, where u is a cyclic vector. Our main result is as follows: if | d e t M | 2 - 1 / d , then the attractor A M has non-empty interior. We also consider the set M of points in A M which have a unique address. We show that unless M belongs to a very special (non-generic) class, the Hausdorff dimension of M is positive. For this special class the full description of M is given as well. This paper continues our work begun...

Multifractal analysis for Birkhoff averages on Lalley-Gatzouras repellers

Henry W. J. Reeve (2011)

Fundamenta Mathematicae

We consider the multifractal analysis for Birkhoff averages of continuous potentials on a class of non-conformal repellers corresponding to the self-affine limit sets studied by Lalley and Gatzouras. A conditional variational principle is given for the Hausdorff dimension of the set of points for which the Birkhoff averages converge to a given value. This extends a result of Barral and Mensi to certain non-conformal maps with a measure dependent Lyapunov exponent.

Multifractal analysis of the divergence of Fourier series

Frédéric Bayart, Yanick Heurteaux (2012)

Annales scientifiques de l'École Normale Supérieure

A famous theorem of Carleson says that, given any function f L p ( 𝕋 ) , p ( 1 , + ) , its Fourier series ( S n f ( x ) ) converges for almost every x 𝕋 . Beside this property, the series may diverge at some point, without exceeding O ( n 1 / p ) . We define the divergence index at  x as the infimum of the positive real numbers β such that S n f ( x ) = O ( n β ) and we are interested in the size of the exceptional sets E β , namely the sets of  x 𝕋 with divergence index equal to  β . We show that quasi-all functions in  L p ( 𝕋 ) have a multifractal behavior with respect to this definition....

Multifractal dimensions for invariant subsets of piecewise monotonic interval maps

Franz Hofbauer, Peter Raith, Thomas Steinberger (2003)

Fundamenta Mathematicae

The multifractal generalizations of Hausdorff dimension and packing dimension are investigated for an invariant subset A of a piecewise monotonic map on the interval. Formulae for the multifractal dimension of an ergodic invariant measure, the essential multifractal dimension of A, and the multifractal Hausdorff dimension of A are derived.

Multifractals and projections.

Fadhila Bahroun, Imen Bhouri (2006)

Extracta Mathematicae

In this paper, we generalize the result of Hunt and Kaloshin [5] about the Lq-spectral dimensions of a measure and that of its projections. The results we obtain, allow to study an untreated case in their work and to find a relationship between the multifractal spectrum of a measure and that of its projections.

Multifunctions of two variables: examples and counterexamples

Jürgen Appell (1996)

Banach Center Publications

A brief account of the connections between Carathéodory multifunctions, Scorza-Dragoni multifunctions, product-measurable multifunctions, and superpositionally measurable multifunctions of two variables is given.

Multi-multifractal decomposition of digraph recursive fractals.

Dominique Simpelaere (2001)

Revista Matemática Iberoamericana

In many situations, both deterministic and probabilistic, one is interested in measure theory in local behaviours, for example in local dimensions, local entropies or local Lyapunov exponents. It has been relevant to study dynamical systems, since the study of multifractal can be further developed for a large class of measures invariant under some map, particularly when there exist strange attractors or repelers (hyperbolic case). Multifractal refers to a notion of size, which emphasizes the local...

Multiparameter admissible superadditive processes

Doğan Çömez (2005)

Colloquium Mathematicae

In this article some properties of Markovian mean ergodic operators are studied. As an application of the tools developed, and using the admissibility feature, a “reduction of order” technique for multiparameter admissible superadditive processes is obtained. This technique is later utilized to obtain a.e. convergence of averages n - 2 i , j = 0 n - 1 f ( i , j ) as well as their weighted version.

Multiparameter multifractional brownian motion : local nondeterminism and joint continuity of the local times

Antoine Ayache, Narn-Rueih Shieh, Yimin Xiao (2011)

Annales de l'I.H.P. Probabilités et statistiques

By using a wavelet method we prove that the harmonisable-type N-parameter multifractional brownian motion (mfBm) is a locally nondeterministic gaussian random field. This nice property then allows us to establish joint continuity of the local times of an (N, d)-mfBm and to obtain some new results concerning its sample path behavior.

Multiplication, distributivity and fuzzy-integral. I

Wolfgang Sander, Jens Siedekum (2005)

Kybernetika

The main purpose is the introduction of an integral which covers most of the recent integrals which use fuzzy measures instead of measures. Before we give our framework for a fuzzy integral we motivate and present in a first part structure- and representation theorems for generalized additions and generalized multiplications which are connected by a strong and a weak distributivity law, respectively.

Currently displaying 181 – 200 of 206