A relation between dimension of the harmonic measure, entropy and drift for a random walk on a hyperbolic space.
S. Solecki proved that if is a system of closed subsets of a complete separable metric space , then each Suslin set which cannot be covered by countably many members of contains a set which cannot be covered by countably many members of . We show that the assumption of separability of cannot be removed from this theorem. On the other hand it can be removed under an extra assumption that the -ideal generated by is locally determined. Using Solecki’s arguments, our result can be used...
We characterize the weak McShane integrability of a vector-valued function on a finite Radon measure space by means of only finite McShane partitions. We also obtain a similar characterization for the Fremlin generalized McShane integral.
This essay outlines a generalized Riemann approach to the analysis of random variation and illustrates it by a construction of Brownian motion in a new and simple manner.