Displaying 401 – 420 of 532

Showing per page

An analogue of the Variational Principle for group and pseudogroup actions

Andrzej Biś (2013)

Annales de l’institut Fourier

We generalize to the case of finitely generated groups of homeomorphisms the notion of a local measure entropy introduced by Brin and Katok [7] for a single map. We apply the theory of dimensional type characteristics of a dynamical system elaborated by Pesin [25] to obtain a relationship between the topological entropy of a pseudogroup and a group of homeomorphisms of a metric space, defined by Ghys, Langevin and Walczak in [12], and its local measure entropies. We prove an analogue of the Variational...

An anti-classification theorem for ergodic measure preserving transformations

Matthew Foreman, Benjamin Weiss (2004)

Journal of the European Mathematical Society

Despite many notable advances the general problem of classifying ergodic measure preserving transformations (MPT) has remained wide open. We show that the action of the whole group of MPT’s on ergodic actions by conjugation is turbulent in the sense of G. Hjorth. The type of classifications ruled out by this property include countable algebraic objects such as those that occur in the Halmos–von Neumann theorem classifying ergodic MPT’s with pure point spectrum. We treat both the classical case of...

An area formula in metric spaces

Valentino Magnani (2011)

Colloquium Mathematicae

We present an area formula for continuous mappings between metric spaces, under minimal regularity assumptions. In particular, we do not require any notion of differentiability. This is a consequence of a measure-theoretic notion of Jacobian, defined as the density of a suitable "pull-back measure". Finally, we give some applications and examples.

An axiomatic approach to Quantum Gauge Field Theory

Thomas Thiemann (1997)

Banach Center Publications

In the present article we display a new constructive quantum field theory approach to quantum gauge field theory, utilizing the recent progress in the integration theory on the moduli space of generalized connections modulo gauge transformations. That is, we propose a new set of Osterwalder Schrader like axioms for the characteristic functional of a measure on the space of generalized connections modulo gauge transformations rather than for the associated Schwinger distributions. We show non-triviality...

Currently displaying 401 – 420 of 532