Analytic measure and quasi-invariant measure
Analytic cocycles of type over an irrational rotation are constructed and an example of that type is given, where all corresponding special flows are weakly mixing.
This paper deals with approximation numbers of the compact trace operator of an anisotropic Besov space into some Lp-space,trΓ: Bpps,a (Rn) → Lp(Γ), s > 0, 1 < p < ∞,where Γ is an anisotropic d-set, 0 < d < n. We also prove homogeneity estimates, a homogeneous equivalent norm and the localization property in Bpps,a.
Using the ratio ergodic theorem for a measure preserving transformation in a -finite measure space we give a straightforward proof of Derriennic’s reverse maximal inequality for the supremum of ergodic ratios.
Soit un nombre de Pisot de degré ; nous avons montré précédemment que l’endomorphisme du tore dont est valeur propre est facteur du -shift bilatéral par une application continue ; nous prouvons ici (théorème 1) que l’application conserve l’entropie de toute mesure invariante sur le -shift. Ceci permet de définir l’entropie d’un nombre dans la base et d’en étudier la stabilité. Nous généralisons également des résultats de Kamae, Rauzy et Bernay.