Approximations of contraction operators on - I
Lattice-valued possibilistic measures, conceived and developed in more detail by G. De Cooman in 1997 [2], enabled to apply the main ideas on which the real-valued possibilistic measures are founded also to the situations often occurring in the real world around, when the degrees of possibility, ascribed to various events charged by uncertainty, are comparable only quantitatively by the relations like “greater than” or “not smaller than”, including the particular cases when such degrees are not...
Some notions of limit weaker than the topological one are studied.
Our goal is to study Pascal-Sierpinski gaskets, which are certain fractal sets defined in terms of divisibility of entries in Pascal's triangle. The principal tool is a carry rule for the addition of the base-q representation of coordinates of points in the unit square. In the case that q = p is prime, we connect the carry rule to the power of p appearing in the prime factorization of binomial coefficients. We use the carry rule to define a family of fractal subsets Bqr of the unit square, and we...
We analyze and cite applications of various, loosely related notions of uniformity inherent to the phenomenon of (multiple) recurrence in ergodic theory. An assortment of results are obtained, among them sharpenings of two theorems due to Bourgain. The first of these, which in the original guarantees existence of sets x,x+h, in subsets E of positive measure in the unit interval, with lower bounds on h depending only on m(E), is expanded to the case of arbitrary finite polynomial configurations...
A new criterion of asymptotic periodicity of Markov operators on , established in [3], is extended to the class of Markov operators on signed measures.
We present a new necessary and sufficient condition for the asymptotic stability of Markov operators acting on the space of signed measures. The proof is based on some special properties of the total variation norm. Our method allows us to consider the Tjon-Wu equation in a linear form. More precisely a new proof of the asymptotic stability of a stationary solution of the Tjon-Wu equation is given.
We study the asymptotic stability of densities for piecewise convex maps with flat bottoms or a neutral fixed point. Our main result is an improvement of Lasota and Yorke's result ([5], Theorem 4).
We describe quantization designs which lead to asymptotically and order optimal functional quantizers for Gaussian processes in a Hilbert space setting. Regular variation of the eigenvalues of the covariance operator plays a crucial role to achieve these rates. For the development of a constructive quantization scheme we rely on the knowledge of the eigenvectors of the covariance operator in order to transform the problem into a finite dimensional quantization problem of normal distributions. ...