Existence and properties of -sets.
We discuss the almost sure existence of random functions that can be written as sums of elementary pulses. We then estimate their uniform Hölder regularity by applying some results on coverings by random intervals.
This article is concerned with the study of the discrete version of generalized ergodic Calderón-Zygmund singular operators. It is shown that such discrete ergodic singular operators for a class of superadditive processes, namely, bounded symmetric admissible processes relative to measure preserving transformations, are weak (1,1). From this maximal inequality, a.e. existence of the discrete ergodic singular transform is obtained for such superadditive processes. This generalizes the well-known...
We extend Champernowne’s construction of normal numbers to base b to the case and obtain an explicit construction of a generic point of the shift transformation of the set .
In [4] it is proved that a measure on a finite coarse-grained space extends, as a signed measure, over the entire power algebra. In [7] this result is reproved and further improved. Both the articles [4] and [7] use the proof techniques of linear spaces (i.e. they use multiplication by real scalars). In this note we show that all the results cited above can be relatively easily obtained by the Horn-Tarski extension technique in a purely combinatorial manner. We also characterize the pure measures...
The monotone expectation is defined as a functional over fuzzy measures on finite sets. The functional is based on Choquet functional over capacities and its more relevant properties are proved, including the generalization of classical mathematical expectation and Dempster's upper and lower expectations of an evidence. In second place, the monotone expectation is used to define measures of fuzzy sets. Such measures are compared with the ones based on Sugeno integral. Finally, we prove a generalization...