Extension of Linear Operators
We present a categorical approach to the extension of probabilities, i.e. normed -additive measures. J. Novák showed that each bounded -additive measure on a ring of sets is sequentially continuous and pointed out the topological aspects of the extension of such measures on over the generated -ring : it is of a similar nature as the extension of bounded continuous functions on a completely regular topological space over its Čech-Stone compactification (or as the extension of continuous...
We prove an abstract version of the Kuratowski extension theorem for Borel measurable maps of a given class. It enables us to deduce and improve its nonseparable version due to Hansell. We also study the ranges of not necessarily injective Borel bimeasurable maps f and show that some control on the relative classes of preimages and images of Borel sets under f enables one to get a bound on the absolute class of the range of f. This seems to be of some interest even within separable spaces.