Generalized Volterra integral equations
The notion of a construction of a fuzzy preference structures is introduced. The properties of a certain class of generated fuzzy implications are studied. The main topic in this paper is investigation of the construction of the monotone generator triplet , which is the producer of fuzzy preference structures. Some properties of mentioned monotone generator triplet are investigated.
Un système fini d’isométries partielles de est dit à générateurs indépendants si les composés non triviaux fixent au plus un point. On décrit un procédé simple et naturel pour obtenir des générateurs indépendants, sans modifier les orbites, pour tout système sans composante minimale homogène : en prenant la restriction de chaque générateur à un certain sous-intervalle de son domaine. Un système avec une composante minimale homogène ne possède pas de générateurs indépendants.
The symbolic dynamical system associated with the Morse sequence is strictly ergodic. We describe some topological and metrical properties of the Cartesian powers of this system, and some of its other self-joinings. Among other things, we show that non generic points appear in the fourth power of the system, but not in lower powers. We exhibit various examples and counterexamples related to the property of weak disjointness of measure preserving dynamical systems.
We examine the boundary behaviour of the generic power series with coefficients chosen from a fixed bounded set in the sense of Baire category. Notably, we prove that for any open subset of the unit disk with a nonreal boundary point on the unit circle, is a dense set of . As it is demonstrated, this conclusion does not necessarily hold for arbitrary open sets accumulating to the unit circle. To complement these results, a characterization of coefficient sets having this property is given....
It is shown that for a typical continuous learning system defined on a compact convex subset of ℝⁿ the Hausdorff dimension of its invariant measure is equal to zero.
It is shown that the set of learning systems having a singular stationary distribution is generic in the family of all systems satisfying the average contractivity condition.
A subset X of a group G is called left genericif finitely many left translates of X cover G. Our main result is that if G is a definably compact group in an o-minimal structure and a definable X ⊆ G is not right generic then its complement is left generic. Among our additional results are (i) a new condition equivalent to definable compactness, (ii) the existence of a finitely additive invariant measure on definable sets in a definably compact group G in the case where G = *H...
If a rotation α of has unbounded partial quotients then “most” of its skew-product diffeomorphic extensions to the 2-torus × defined by cocycles of topological degree zero enjoy nontrivial ergodic properties. In fact they admit a cyclic approximation with speed o(1/n) and have nondiscrete (simple) spectrum. Similar results are obtained for cocycles if α admits a sufficiently good approximation by rationals. For a.e. α and generic cocycles the speed can be improved to o(1/(nlogn)). For generic...
It is shown that in the group of invertible measurable nonsingular transformations on a Lebesgue probability space, endowed with the coarse topology, the transformations with infinite ergodic index are generic; they actually form a dense set. (A transformation has infinite ergodic index if all its finite Cartesian powers are ergodic.) This answers a question asked by C. Silva. A similar result was proved by U. Sachdeva in 1971, for the group of transformations preserving an infinite measure. Exploring...