The search session has expired. Please query the service again.
The paper discusses development of the theory of value distribution and growth of meromorphic functions, focusing on two basic notions: exceptional values and asymptotic values. Some historical context is given and contemporary achievements are presented. In particular, recent results concerning exceptional functions and asymptotic functions are considered.
Let E be a compact set in the complex plane, be the Green function of the unbounded component of with pole at infinity and where the supremum is taken over all polynomials of degree at most n, and . The paper deals with recent results concerning a connection between the smoothness of (existence, continuity, Hölder or Lipschitz continuity) and the growth of the sequence . Some additional conditions are given for special classes of sets.
Currently displaying 1 –
3 of
3