Page 1 Next

Displaying 1 – 20 of 887

Showing per page

A characterization of Fuchsian groups acting on complex hyperbolic spaces

Xi Fu, Liulan Li, Xiantao Wang (2012)

Czechoslovak Mathematical Journal

Let G 𝐒𝐔 ( 2 , 1 ) be a non-elementary complex hyperbolic Kleinian group. If G preserves a complex line, then G is -Fuchsian; if G preserves a Lagrangian plane, then G is -Fuchsian; G is Fuchsian if G is either -Fuchsian or -Fuchsian. In this paper, we prove that if the traces of all elements in G are real, then G is Fuchsian. This is an analogous result of Theorem V.G. 18 of B. Maskit, Kleinian Groups, Springer-Verlag, Berlin, 1988, in the setting of complex hyperbolic isometric groups. As an application...

A family of M-surfaces whose automorphism groups act transitively on the mirrors.

Adnan Melekoglu (2000)

Revista Matemática Complutense

Let X be a compact Riemmann surface of genus g > 1. A symmetry T of X is an anticonformal involution. The fixed point set of T is a disjoint union of simple closed curves, each of which is called a mirror of T. If T fixes g +1 mirrors then it is called an M-symmetry and X is called an M-surface. If X admits an automorphism of order g + 1 which cyclically permutes the mirrors of T then we shall call X an M-surface with the M-property. In this paper we investigate those M-surfaces with the...

A footnote to the Poincaré complete reducibility theorem.

Henrik H. Martens (1992)

Publicacions Matemàtiques

Poincaré's work on the reduction of Abelian integrals contains implicitly an algorithm for the expression of a theta function as a sum of products of theta functions of fewer variables in the presence of reduction. The aim of this paper is to give explicit formulations and reasonably complete proofs of Poincaré's results.

A holomorphic correspondence at the boundary of the Klein combination locus

Shaun Bullett, Andrew Curtis (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

We investigate an explicit holomorphic correspondence on the Riemann sphere with striking dynamical behaviour: the limit set is a fractal resembling the one-skeleton of a tetrahedron and on each component of the complement of this set the correspondence behaves like a Fuchsian group.

A new characterization of Gromov hyperbolicity for negatively curved surfaces.

José M. Rodríguez, Eva Tourís (2006)

Publicacions Matemàtiques

In this paper we show that to check Gromov hyperbolicity of any surface of constant negative curvature, or Riemann surface, we only need to verify the Rips condition on a very small class of triangles, namely, those obtained by marking three points in a simple closed geodesic. This result is, in fact, a new characterization of Gromov hyperbolicity for Riemann surfaces.

Currently displaying 1 – 20 of 887

Page 1 Next