The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
169
T. Kaluza has given a criterion for the signs of the power series of a function that is the reciprocal of another power series. In this note the sharpness of this condition is explored and various examples in terms of the Gaussian hypergeometric series are given. A criterion for the monotonicity of the quotient of two power series due to M. Biernacki and J. Krzyż is applied.
We investigate how the growth of an algebroid function could be affected by the distribution of the arguments of its a-points in the complex plane. We give estimates of the growth order of an algebroid function with radially distributed values, which are counterparts of results for meromorphic functions with radially distributed values.
Let f(z), , be analytic in the finite disc |z| < R. The growth properties of f(z) are studied using the mean values and the iterated mean values of f(z). A convexity result for the above mean values is obtained and their relative growth is studied using the order and type of f(z).
We characterize the power series with the geometric property that, for sufficiently many points , , a circle contains infinitely many partial sums. We show that is a rational function of special type; more precisely, there are and , such that, the sequence , , is periodic. This result answers in the affirmative a question of J.-P. Kahane and furnishes stronger versions of the main results of [Katsoprinakis, Arkiv for Matematik]. We are led to consider special families of circles with...
Currently displaying 81 –
100 of
169