The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

Partial sums of Taylor series on a circle

E. S. Katsoprinakis, V. N. Nestoridis (1989)

Annales de l'institut Fourier

We characterize the power series n = 0 c n z n with the geometric property that, for sufficiently many points z , | z | = 1 , a circle C ( z ) contains infinitely many partial sums. We show that n = 0 c n z n is a rational function of special type; more precisely, there are t and n 0 , such that, the sequence c n e int , n n 0 , is periodic. This result answers in the affirmative a question of J.-P. Kahane and furnishes stronger versions of the main results of [Katsoprinakis, Arkiv for Matematik]. We are led to consider special families of circles C ( z ) with...

Currently displaying 1 – 6 of 6

Page 1