The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 521 – 540 of 1151

Showing per page

On a class of starlike functions defined in a halfplane

G. Dimkov, J. Stankiewicz, Z. Stankiewicz (1991)

Annales Polonici Mathematici

Let D = z: Re z < 0 and let S*(D) be the class of univalent functions normalized by the conditions l i m D z ( f ( z ) - z ) = a , a a finite complex number, 0 ∉ f(D), and mapping D onto a domain f(D) starlike with respect to the exterior point w = 0. Some estimates for |f(z)| in the class S*(D) are derived. An integral formula for f is also given.

On a Convexity Preserving Integral Operator

Oros, Gheorghe, Irina Oros, Georgia (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 30C45, 30A20, 34C40In this paper we determine conditions an analytic function g needs to satisfy in order that the function Fgiven by (1) be convex.

On a generalization of close-to-convex functions

Swadesh Kumar Sahoo, Navneet Lal Sharma (2015)

Annales Polonici Mathematici

The paper of M. Ismail et al. [Complex Variables Theory Appl. 14 (1990), 77-84] motivates the study of a generalization of close-to-convex functions by means of a q-analog of the difference operator acting on analytic functions in the unit disk 𝔻 = {z ∈ ℂ:|z| < 1}. We use the term q-close-to-convex functions for the q-analog of close-to-convex functions. We obtain conditions on the coefficients of power series of functions analytic in the unit disk which ensure that they generate functions in...

Currently displaying 521 – 540 of 1151