The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let X×Y be the Cartesian product of two locally finite, connected networks that need not have reversible conductance. If X,Y represent random walks, it is known that if X×Y is recurrent, then X,Y are both recurrent. This fact is proved here by non-probabilistic methods, by using the properties of separately superharmonic functions. For this class of functions on the product network X×Y, the Dirichlet solution, balayage, minimum principle etc. are obtained. A unique integral representation is given...
We complete the characterization of singular sets of separately analytic functions. In the case of functions of two variables this was earlier done by J. Saint Raymond and J. Siciak.
On étudie les singularités et l’intégrabilité d’une classe de fonctions
plurisousharmoniques sur une variété analytique de dimension . Pour étudier
ce problème, nous commençons par contrôler les nombres de Lelong de certains types de
fonctions plurisousharmoniques . Ensuite, nous étudions les singularités du
transformé strict du courant par un éclatement de au dessus d’un point.
Nous répondons ainsi positivement au problème d’intégrabilité locale de , lorsque , et lorsque est une fonction
plurisousharmonique...
Let E be a compact set in the complex plane, be the Green function of the unbounded component of with pole at infinity and where the supremum is taken over all polynomials of degree at most n, and . The paper deals with recent results concerning a connection between the smoothness of (existence, continuity, Hölder or Lipschitz continuity) and the growth of the sequence . Some additional conditions are given for special classes of sets.
In this paper we investigate some applications of the trace condition for pluriharmonic functions on a smooth, bounded domain in Cn. This condition, related to the normal component on ∂D of the ∂-operator, permits us to study the Neumann problem for pluriharmonic functions and the ∂-problem for (0,1)-forms on D with solutions having assigned real part on the boundary.
Let be the boundary of the unit ball of . A set of second order linear partial differential operators, tangential to , is explicitly given in such a way that, for , the corresponding PDE caractherize the trace of the solution of the pluriharmonic problem (either “in the large” or “local”), relative to .
0. Introduction. Nous donnons ici une étude systématique des systèmes doublement orthogonaux "de Bergman" et leurs applications à certains aspects de l'analyse pluricomplexe: espaces de fonctions holomorphes, fonctions séparément analytiques. C'est en quelque sorte un article de synthèse. On y trouve cependant des démonstrations détaillées qui n'ont paru nulle part ailleurs.
Currently displaying 1 –
14 of
14