The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 801 – 820 of 2028

Showing per page

Inversion Formulas for the q-Riemann-Liouville and q-Weyl Transforms Using Wavelets

Fitouhi, Ahmed, Bettaibi, Néji, Binous, Wafa (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 42A38, 42C40, 33D15, 33D60This paper aims to study the q-wavelets and the continuous q-wavelet transforms, associated with the q-Bessel operator for a fixed q ∈]0, 1[. Using the q-Riemann-Liouville and the q-Weyl transforms, we give some relations between the continuous q-wavelet transform, studied in [3], and the continuous q-wavelet transform associated with the q-Bessel operator, and we deduce formulas which give the inverse operators of the q-Riemann-Liouville and...

Irrationalité de valeurs de zêta

Stéphane Fischler (2002/2003)

Séminaire Bourbaki

Les valeurs aux entiers pairs (strictement positifs) de la fonction ζ de Riemann sont transcendantes, car ce sont des multiples rationnels de puissances de π . En revanche, on sait très peu de choses sur la nature arithmétique des ζ ( 2 k + 1 ) , pour k 1 entier. Apéry a démontré en 1978 que ζ ( 3 ) est irrationnel. Rivoal a prouvé en 2000 qu’une infinité de ζ ( 2 k + 1 ) sont irrationnels, mais sans pouvoir en exhiber aucun autre que ζ ( 3 ) . Il existe plusieurs points de vue sur la preuve d’Apéry ; celui des séries hypergéométriques...

Isotropic random walks on affine buildings

James Parkinson (2007)

Annales de l’institut Fourier

In this paper we apply techniques of spherical harmonic analysis to prove a local limit theorem, a rate of escape theorem, and a central limit theorem for isotropic random walks on arbitrary thick regular affine buildings of irreducible type. This generalises results of Cartwright and Woess where A ˜ n buildings are studied, Lindlbauer and Voit where A ˜ 2 buildings are studied, and Sawyer where homogeneous trees are studied (these are A ˜ 1 buildings).

Currently displaying 801 – 820 of 2028