Nonnegative point spectrum for differential equations with infinite delays
A differential equation of the form (q(t)k(u)u')' = λf(t)h(u)u' depending on the positive parameter λ is considered and nonnegative solutions u such that u(0) = 0, u(t) > 0 for t > 0 are studied. Some theorems about the existence, uniqueness and boundedness of solutions are given.
In this paper we study extremal properties of functional associated with the half–linear second order differential equation E. Necessary and sufficient condition for nonnegativity of this functional is given in two special cases: the first case is when both points are regular and the second is the case, when one end point is singular. The obtained results extend the theory of quadratic functionals.
In this paper we consider the equation where are real valued continuous functions on such that , and is continuous in such that for . We obtain sufficient conditions for solutions of the considered equation to be nonoscillatory. Furthermore, the asymptotic behaviour of these nonoscillatory solutions is studied.
We study the existence and nonexistence of nonoscillatory solutions of a two-dimensional systemof first-order dynamic equations on time scales. Our approach is based on the Knaster and Schauder fixed point theorems and some certain integral conditions. Examples are given to illustrate some of our main results.