Critical case of multiple pairs of pure imaginary roots of a nonautonomous essentially nonlinear differential system.
We show the location of so called critical points, i.e., couples of diffusion coefficients for which a non-trivial solution of a linear reaction-diffusion system of activator-inhibitor type on an interval with Neumann boundary conditions and with additional non-linear unilateral condition at one or two points on the boundary and/or in the interior exists. Simultaneously, we show the profile of such solutions.
Elastic two-layer curved composite beam with partial shear interaction is considered. It is assumed that each curved layer separately follows the Euler-Bernoulli hypothesis and the load slip relation for the flexible shear connection is a linear relationship. The curved composite beam at one of the end cross sections is fixed and the other end cross section is subjected by a concentrated radial load. Two cases are considered. In the first case the loaded end cross section is closed by a rigid plate...
On construit un transport transverse aux fibres d’une fonction multivaluée de type ( complexes), à l’origine de . Ce transport est unique à isotopie près. On en déduit l’existence de voisinages réguliers dans lesquels les fibres sont toutes difféomorphes (voire dans un cas quasi-homogène, analytiquement difféomorphes). On obtient également une généralisation de la notion de monodromie. On calcule enfin l’homologie évanescente de la fibre-type, en précisant le gradué qui lui est associé.