On Solutions of a Differential Equation which are not of Integrable Square.
We consider a Lidstone boundary value problem in at resonance. We prove the existence of a solution under the assumption that the nonlinear part is a Carathéodory map and conditions similar to those of Landesman-Lazer are satisfied.
The zeros of the solution of the differential equation are investigated when , and has some monotonicity properties as . The notion is introduced also for real, too. We are particularly interested in solutions which are “close" to the functions , when is large. We derive a formula for and apply the result to Bessel differential equation, where we introduce new pair of linearly independent solutions replacing the usual pair , . We show the concavity of for and also...
The aim of our paper is to study oscillatory and asymptotic properties of solutions of nonlinear differential equations of the third order with deviating argument. In particular, we prove a comparison theorem for properties A and B as well as a comparison result on property A between nonlinear equations with and without deviating arguments. Our assumptions on nonlinearity f are related to its behavior only in a neighbourhood of zero and/or of infinity.
We consider boundary value problems for second order differential equations of the form with the boundary conditions , , where are continuous functions, satisfies the local Carathéodory conditions and are continuous and nondecreasing functionals. Existence results are proved by the method of lower and upper functions and applying the degree theory for -condensing operators.
Consider boundary value problems for a functional differential equation where are positive linear operators; is a linear bounded vector-functional, , , . Let the solvability set be the set of all points such that for all operators , with the problems have a unique solution for every and . A method of finding the solvability sets are proposed. Some new properties of these sets are obtained in various cases. We continue the investigations of the solvability sets started in R. Hakl,...
In the paper the comparison method is used to prove the convergence of the Picard iterations, the Seidel iterations, as well as some modifications of these methods applied to approximate solution of systems of differential algebraic equations. The both linear and nonlinear comparison equations are emloyed.