The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 821 –
840 of
9351
This paper deals with a class of nonlinear control systems in in presence of deterministic uncertainty. The uncertainty is modelled by a multivalued map F with nonempty, closed, convex values. Given a nonempty closed set from a suitable class, which includes the convex sets, we solve the problem of finding a state feedback ū(t,x) in such a way that K is invariant under any system dynamics f. As a system dynamics we consider any continuous selection of the uncertain controlled dynamics F.
We study the inverse problem of recovering Sturm-Liouville operators on the half-line with a Bessel-type singularity inside the interval from the given Weyl function. The corresponding uniqueness theorem is proved, a constructive procedure for the solution of the inverse problem is provided, also necessary and sufficient conditions for the solvability of the inverse problem are obtained.
Currently displaying 821 –
840 of
9351