Displaying 961 – 980 of 9351

Showing per page

Approximate properties of principal solutions of Volterra-type integrodifferential equations with infinite aftereffect

Yu. A. Ryabov (1995)

Mathematica Bohemica

The integrodifferential system with aftereffect (“heredity” or “prehistory”) dx/dt=Ax+-t R(t,s)x(s,)ds, is considered; here ε is a positive small parameter, A is a constant n × n matrix, R ( t , s ) is the kernel of this system exponentially decreasing in norm as t . It is proved, if matrix A and kernel R ( t , s ) satisfy some restrictions and ε does not exceed some bound ε * , then the n -dimensional set of the so-called principal two-sided solutions x ˜ ( t , ε ) approximates in asymptotic sense the infinite-dimensional set of solutions...

Approximate solution of an inhomogeneous abstract differential equation

Emil Vitásek (2012)

Applications of Mathematics

Recently, we have developed the necessary and sufficient conditions under which a rational function F ( h A ) approximates the semigroup of operators exp ( t A ) generated by an infinitesimal operator A . The present paper extends these results to an inhomogeneous equation u ' ( t ) = A u ( t ) + f ( t ) .

Approximate solutions for integrodifferential equations of the neutral type

B. G. Pachpatte (2010)

Commentationes Mathematicae Universitatis Carolinae

The main objective of the present paper is to study the approximate solutions for integrodifferential equations of the neutral type with given initial condition. A variant of a certain fundamental integral inequality with explicit estimate is used to establish the results. The discrete analogues of the main results are also given.

Approximate solutions of abstract differential equations

Emil Vitásek (2007)

Applications of Mathematics

The methods of arbitrarily high orders of accuracy for the solution of an abstract ordinary differential equation are studied. The right-hand side of the differential equation under investigation contains an unbounded operator which is an infinitesimal generator of a strongly continuous semigroup of operators. Necessary and sufficient conditions are found for a rational function to approximate the given semigroup with high accuracy.

Approximate solutions of matrix differential equations.

Lucas Jódar Sánchez, A. Hervás, D. García Sala (1986)

Stochastica

A method for solving second order matrix differential equations avoiding the increase of the dimension of the problem is presented. Explicit approximate solutions and an error bound of them in terms of data are given.

Approximate weak invariance for semilinear differential inclusions in Banach spaces

Alina Lazu, Victor Postolache (2011)

Open Mathematics

In this paper we give a criterion for a given set K in Banach space to be approximately weakly invariant with respect to the differential inclusion x′(t) ∈ Ax(t) + F(x(t)), where A generates a C 0-semigroup and F is a given multi-function, using the concept of a tangent set to another set. As an application, we establish the relation between approximate solutions to the considered differential inclusion and solutions to the relaxed one, i.e., x′(t) ∈ Ax(t) + c o ¯ F(x(t)), without any Lipschitz conditions...

Approximating the Stability Region for a Differential Equation with a Distributed Delay

S. A. Campbell, R. Jessop (2009)

Mathematical Modelling of Natural Phenomena

We discuss how distributed delays arise in biological models and review the literature on such models. We indicate why it is important to keep the distributions in a model as general as possible. We then demonstrate, through the analysis of a particular example, what kind of information can be gained with only minimal information about the exact distribution of delays. In particular we show that a distribution independent stability region may be obtained in a similar way that delay independent...

Approximation methods for solving the Cauchy problem

Cristinel Mortici (2005)

Czechoslovak Mathematical Journal

In this paper we give some new results concerning solvability of the 1-dimensional differential equation y ' = f ( x , y ) with initial conditions. We study the basic theorem due to Picard. First we prove that the existence and uniqueness result remains true if f is a Lipschitz function with respect to the first argument. In the second part we give a contractive method for the proof of Picard theorem. These considerations allow us to develop two new methods for finding an approximation sequence for the solution....

Currently displaying 961 – 980 of 9351