Approximate controllability of semilinear neutral systems in Hilbert spaces.
The integrodifferential system with aftereffect (“heredity” or “prehistory”) dx/dt=Ax+-t R(t,s)x(s,)ds, is considered; here is a positive small parameter, is a constant matrix, is the kernel of this system exponentially decreasing in norm as . It is proved, if matrix and kernel satisfy some restrictions and does not exceed some bound , then the -dimensional set of the so-called principal two-sided solutions approximates in asymptotic sense the infinite-dimensional set of solutions...
Recently, we have developed the necessary and sufficient conditions under which a rational function approximates the semigroup of operators generated by an infinitesimal operator . The present paper extends these results to an inhomogeneous equation .
The main objective of the present paper is to study the approximate solutions for integrodifferential equations of the neutral type with given initial condition. A variant of a certain fundamental integral inequality with explicit estimate is used to establish the results. The discrete analogues of the main results are also given.
The methods of arbitrarily high orders of accuracy for the solution of an abstract ordinary differential equation are studied. The right-hand side of the differential equation under investigation contains an unbounded operator which is an infinitesimal generator of a strongly continuous semigroup of operators. Necessary and sufficient conditions are found for a rational function to approximate the given semigroup with high accuracy.
A method for solving second order matrix differential equations avoiding the increase of the dimension of the problem is presented. Explicit approximate solutions and an error bound of them in terms of data are given.
In this paper we give a criterion for a given set K in Banach space to be approximately weakly invariant with respect to the differential inclusion x′(t) ∈ Ax(t) + F(x(t)), where A generates a C 0-semigroup and F is a given multi-function, using the concept of a tangent set to another set. As an application, we establish the relation between approximate solutions to the considered differential inclusion and solutions to the relaxed one, i.e., x′(t) ∈ Ax(t) + F(x(t)), without any Lipschitz conditions...
We discuss how distributed delays arise in biological models and review the literature on such models. We indicate why it is important to keep the distributions in a model as general as possible. We then demonstrate, through the analysis of a particular example, what kind of information can be gained with only minimal information about the exact distribution of delays. In particular we show that a distribution independent stability region may be obtained in a similar way that delay independent...
In this paper we give some new results concerning solvability of the 1-dimensional differential equation with initial conditions. We study the basic theorem due to Picard. First we prove that the existence and uniqueness result remains true if is a Lipschitz function with respect to the first argument. In the second part we give a contractive method for the proof of Picard theorem. These considerations allow us to develop two new methods for finding an approximation sequence for the solution....