Displaying 81 – 100 of 219

Showing per page

Differentiability of perturbed semigroups and delay semigroups

Charles J. K. Batty (2007)

Banach Center Publications

Suppose that A generates a C₀-semigroup T on a Banach space X. In 1953 R. S. Phillips showed that, for each bounded operator B on X, the perturbation A+B of A generates a C₀-semigroup on X, and he considered whether certain classes of semigroups are stable under such perturbations. This study was extended in 1968 by A. Pazy who identified a condition on the resolvent of A which is sufficient for the perturbed semigroups to be immediately differentiable. However, M. Renardy showed in 1995 that immediate...

Differential analogues of the Brück conjecture

Xiao-Guang Qi, Lian-Zhong Yang (2011)

Annales Polonici Mathematici

We give some growth properties for solutions of linear complex differential equations which are closely related to the Brück Conjecture. We also prove that the Brück Conjecture holds when certain proximity functions are relatively small.

Differential conditions to verify the Jacobian Conjecture

Ludwik M. Drużkowski, Halszka K. Tutaj (1992)

Annales Polonici Mathematici

Let F be a polynomial mapping of ℝ², F(O) = 0. In 1987 Meisters and Olech proved that the solution y(·) = 0 of the autonomous system of differential equations ẏ = F(y) is globally asymptotically stable provided that the jacobian of F is everywhere positive and the trace of the matrix of the differential of F is everywhere negative. In particular, the mapping F is then injective. We give an n-dimensional generalization of this result.

Differential equations and algebraic transcendents: french efforts at the creation of a Galois theory of differential equations 1880–1910

Tom Archibald (2011)

Revue d'histoire des mathématiques

A “Galois theory” of differential equations was first proposed by Émile Picard in 1883. Picard, then a young mathematician in the course of making his name, sought an analogue to Galois’s theory of polynomial equations for linear differential equations with rational coefficients. His main results were limited by unnecessary hypotheses, as was shown in 1892 by his student Ernest Vessiot, who both improved Picard’s results and altered his approach, leading Picard to assert that his lay closest to...

Currently displaying 81 – 100 of 219