The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
1670
We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput. (to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core idea behind the...
We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant
propagation is described by a transport equation.
This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput.
(to appear)], where the one-dimensional finite-volume-particle method has been proposed.
The core idea behind the...
A criterion for the unique solvability of and sufficient conditions for the correctness of the modified Vallèe-Poussin problem are established for the linear ordinary differential equations with singularities.
An orthogonal system of polynomials, arising from a second-order ordinary differential equation, is presented.
We consider a boundary value problem for first order nonconvex differential inclusion and we obtain some existence results by using the set-valued contraction principle.
Currently displaying 101 –
120 of
1670