The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1581 – 1600 of 1670

Showing per page

Oscillation theorems for neutral differential equations of higher order

Jozef Džurina (2004)

Czechoslovak Mathematical Journal

In this paper we present some new oscillatory criteria for the n -th order neutral differential equations of the form ( x ( t ) ± p ( t ) x [ τ ( t ) ] ) ( n ) + q ( t ) x [ σ ( t ) ] = 0 . The results obtained extend and improve a number of existing criteria.

Oscillation theorems for neutral differential equations with the quasi-derivatives

Miroslava Růžičková, E. Špániková (1994)

Archivum Mathematicum

The authors study the n-th order nonlinear neutral differential equations with the quasi – derivatives L n [ x ( t ) + ( - 1 ) r P ( t ) x ( g ( t ) ) ] + δ Q ( t ) f ( x ( h ( t ) ) ) = 0 , where n 2 , r { 1 , 2 } , and δ = ± 1 . There are given sufficient conditions for solutions to be either oscillatory or they converge to zero.

Oscillation Theorems for Second Order Sublinear Ordinary Differential Equations

Elabbasy, E. (1997)

Serdica Mathematical Journal

Oscillation criteria are given for the second order sublinear non-autonomous differential equation. (r(t) (x)x′(t))′ + q(t)g(x(t)) = (t). These criteria extends and improves earlier oscillation criteria of Kamenev, Kura, Philos and Wong. Oscillation criteria are also given for second order sublinear damped non-autonomous differential equations.

Currently displaying 1581 – 1600 of 1670