The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The classical framework for studying the equations governing the motion of lumped parameter systems presumes one can provide expressions for the forces in terms of kinematical quantities for the individual constituents. This is not possible for a very large class of problems where one can only provide implicit relations between the forces and the kinematical quantities. In certain special cases, one can provide non-invertible expressions for a kinematical quantity in terms of the force, which then...
Modern physics theories claim that the dynamics of interfaces between
the two-phase is described by the evolution equations involving the
curvature and various kinematic energies. We consider the motion of
spiral-shaped polygonal curves by its crystalline curvature, which
deserves a mathematical model of real crystals. Exploiting the
comparison principle, we show the local existence and uniqueness of the
solution.
Let Φ : H → R be a C2 function on a real Hilbert space and ∑ ⊂ H x R the manifold defined by ∑ := Graph (Φ).
We study
the motion of a material point with unit mass, subjected to stay on Σ
and which moves under the action of the gravity force
(characterized by g>0), the reaction force and the friction force (
is the friction parameter). For any initial conditions at time t=0,
we prove
the existence of a trajectory x(.) defined on R+. We are then interested in the asymptotic behaviour of...
Let be a function on a real Hilbert space and the manifold defined by Graph . We study the motion of a material point with unit mass, subjected to stay on and which moves under the action of the gravity force (characterized by ), the reaction force and the friction force ( is the friction parameter). For any initial conditions at time , we prove the existence of a trajectory defined on . We are then interested in the asymptotic behaviour of the trajectories when . More precisely,...
Currently displaying 1 –
10 of
10