The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A nonlinear system of two delay differential equations is proposed to model
hematopoietic stem cell dynamics. Each equation describes the evolution of a
sub-population, either proliferating or nonproliferating. The nonlinearity
accounting for introduction of nonproliferating cells in the proliferating phase
is assumed to depend upon the total number of cells. Existence and stability
of steady states are investigated. A Lyapunov functional is built to obtain the
global asymptotic stability of the...
This paper provides an introduction to delay differential equations together with a short survey on state-dependent delay differential equations arising in population dynamics. Our main goal is to examine how the delays emerge from inner mechanisms in the model, how they induce oscillations and stability switches in the system and how the qualitative behaviour of a biological model depends on the form of the delay.
The model analyzed in this paper is based on the model set forth by V.A. Kuznetsov and M.A. Taylor, which describes a competition between the tumor and immune cells. Kuznetsov and Taylor assumed that tumor-immune interactions can be described by a Michaelis-Menten function. In the present paper a simplified version of the Kuznetsov-Taylor model (where immune reactions are described by a bilinear term) is studied. On the other hand, the effect of time delay is taken into account in order to achieve...
Currently displaying 1 –
6 of
6