The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Discrete spectrum and principal functions of non-selfadjoint differential operator

Gülen Başcanbaz Tunca, Elgiz Bairamov (1999)

Czechoslovak Mathematical Journal

In this article, we consider the operator L defined by the differential expression ( y ) = - y ' ' + q ( x ) y , - < x < in L 2 ( - , ) , where q is a complex valued function. Discussing the spectrum, we prove that L has a finite number of eigenvalues and spectral singularities, if the condition sup - < x < exp ϵ | x | | q ( x ) | < , ϵ > 0 holds. Later we investigate the properties of the principal functions corresponding to the eigenvalues and the spectral singularities.

Currently displaying 1 – 3 of 3

Page 1