Monotone finite difference domain decomposition algorithms and applications to nonlinear singularly perturbed reaction-diffusion problems.
We consider the initial value problem for an infinite system of differential-functional equations of parabolic type. General operators of parabolic type of second order with variable coefficients are considered and the system is weakly coupled. The solutions are obtained by the monotone iterative method. We prove theorems on weak partial differential-functional inequalities as well the existence and uniqueness theorems in the class of continuous bounded functions and in the class of functions satisfying...
The paper deals with the existence of solutions of the form with operators monotone in a broader sense, including pseudomonotone operators and operators satisfying conditions and . The first part of the paper which has a methodical character is concluded by the proof of an existence theorem for the equation on a reflexive separable Banach space with a bounded demicontinuous coercive operator satisfying condition . The second part which has a character of a survey compares various types of...
We prove the existence of solutions to , together with appropriate boundary conditions, whenever is a maximal monotone graph in , for every fixed . We propose an adequate setting for this problem, in particular as far as measurability is concerned. It consists in looking at the graph after a rotation, for every fixed ; in other words, the graph is defined through , where is a Carathéodory contraction in . This definition is shown to be equivalent to the fact that is pointwise monotone...
We present some monotonicity and symmetry results for positive solutions of the equation satisfying an homogeneous Dirichlet boundary condition in a bounded domain . We assume 1 < p < 2 and locally Lipschitz continuous and we do not require any hypothesis on the critical set of the solution. In particular we get that if is a ball then the solutions are radially symmetric and strictly radially decreasing.