Multiple positive solutions of singular -Laplacian problems by variational methods.
We study the multiplicity of solutions for a class of p(x)-Laplacian equations involving the critical exponent. Under suitable assumptions, we obtain a sequence of radially symmetric solutions associated with a sequence of positive energies going toward infinity.
We consider a quasilinear elliptic eigenvalue problem with a discontinuous right hand side. To be able to have an existence theory, we pass to a multivalued problem (elliptic inclusion). Using a variational approach based on the critical point theory for locally Lipschitz functions, we show that we have at least three nontrivial solutions when from the left, being the principal eigenvalue of the p-Laplacian with the Dirichlet boundary conditions.