Displaying 441 – 460 of 515

Showing per page

Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory

Marek Izydorek, Krzysztof P. Rybakowski (2003)

Fundamenta Mathematicae

Let Ω be a bounded domain in N with smooth boundary. Consider the following elliptic system: - Δ u = v H ( u , v , x ) in Ω, - Δ v = u H ( u , v , x ) in Ω, u = 0, v = 0 in ∂Ω. (ES) We assume that H is an even "-"-type Hamiltonian function whose first order partial derivatives satisfy appropriate growth conditions. We show that if (0,0) is a hyperbolic solution of (ES), then (ES) has at least 2|μ| nontrivial solutions, where μ = μ(0,0) is the renormalized Morse index of (0,0). This proves a conjecture by Angenent and van der Vorst.

Multiple solutions of semilinear elliptic systems

Yang Jianfu (1998)

Commentationes Mathematicae Universitatis Carolinae

We obtain in this paper a multiplicity result for strongly indefinite semilinear elliptic systems in bounded domains as well as in N .

Multiple solutions to a perturbed Neumann problem

Giuseppe Cordaro (2007)

Studia Mathematica

We consider the perturbed Neumann problem ⎧ -Δu + α(x)u = α(x)f(u) + λg(x,u) a.e. in Ω, ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω, where Ω is an open bounded set in N with boundary of class C², α L ( Ω ) with e s s i n f Ω α > 0 , f: ℝ → ℝ is a continuous function and g: Ω × ℝ → ℝ, besides being a Carathéodory function, is such that, for some p > N, s u p | s | t | g ( , s ) | L p ( Ω ) and g ( , t ) L ( Ω ) for all t ∈ ℝ. In this setting, supposing only that the set of global minima of the function 1 / 2 ξ ² - 0 ξ f ( t ) d t has M ≥ 2 bounded connected components, we prove that, for all λ ∈ ℝ small enough, the above...

Currently displaying 441 – 460 of 515