The search session has expired. Please query the service again.
Displaying 481 –
485 of
485
We consider the cubic defocusing nonlinear Schrödinger equation in the two dimensional torus. Fix . Recently Colliander, Keel, Staffilani, Tao and Takaoka proved the existence of solutions with -Sobolev norm growing in time. We establish the existence of solutions with polynomial time estimates. More exactly, there is such that for any we find a solution and a time such that . Moreover, the time satisfies the polynomial bound .
We derive a posteriori error estimates for singularly
perturbed reaction–diffusion problems which yield a guaranteed
upper bound on the discretization error and are fully and easily
computable. Moreover, they are also locally efficient and robust in
the sense that they represent local lower bounds for the actual
error, up to a generic constant independent in particular of the
reaction coefficient. We present our results in the framework of
the vertex-centered finite volume method but their nature...
We discuss the propagation of electromagnetic waves of a special form through an inhomogeneous isotropic medium which has a cylindrical symmetry and a nonlinear dielectric response. For the case where this response is of self-focusing type the problem is treated in [1]. Here we continue this study by dealing with a defocusing dielectric response. This tends to inhibit the guidance properties of the medium and so guidance can only be expected provided that the cylindrical stratification is such that...
Currently displaying 481 –
485 of
485