Displaying 601 – 620 of 1682

Showing per page

Solvability of the heat equation in weighted Sobolev spaces

Wojciech M. Zajączkowski (2011)

Applicationes Mathematicae

The existence of solutions to an initial-boundary value problem to the heat equation in a bounded domain in ℝ³ is proved. The domain contains an axis and the existence is proved in weighted anisotropic Sobolev spaces with weight equal to a negative power of the distance to the axis. Therefore we prove the existence of solutions which vanish sufficiently fast when approaching the axis. We restrict our considerations to the Dirichlet problem, but the Neumann and the third boundary value problems can...

Solvability of the Poisson equation in weighted Sobolev spaces

Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

The aim of this paper is to prove the existence of solutions to the Poisson equation in weighted Sobolev spaces, where the weight is the distance to some distinguished axis, raised to a negative power. Therefore we are looking for solutions which vanish sufficiently fast near the axis. Such a result is useful in the proof of the existence of global regular solutions to the Navier-Stokes equations which are close to axially symmetric solutions.

Solvability of the stationary Stokes system in spaces H ² - μ , μ ∈ (0,1)

Ewa Zadrzyńska, Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

We consider the stationary Stokes system with slip boundary conditions in a bounded domain. Assuming that data functions belong to weighted Sobolev spaces with weights equal to some power of the distance to some distinguished axis, we prove the existence of solutions to the problem in appropriate weighted Sobolev spaces.

Solvability of two stationary free boundary problems for the Navier-Stokes equations

V. A. Solonnikov (1998)

Bollettino dell'Unione Matematica Italiana

Si studiano due problemi con frontiera libera per equazioni stazionarie di Navier-Stokes: il problema del movimento di un liquido viscoso incomprimibile generato dalla rotazione di una sbarra rigida immersa nel liquido con velocità angolare assegnata e il problema della fuoriuscita di un liquido da un tubo circolare nello spazio libero. Si assegna l'angolo di contatto tra la frontiera libera e la superficie del tubo e, nel secondo problema, il flusso totale del liquido attraverso l'apertura del...

Solvability problem for strong-nonlinear nondiagonal parabolic system

Arina A. Arkhipova (2002)

Mathematica Bohemica

A class of q -nonlinear parabolic systems with a nondiagonal principal matrix and strong nonlinearities in the gradient is considered.We discuss the global in time solvability results of the classical initial boundary value problems in the case of two spatial variables. The systems with nonlinearities q ( 1 , 2 ) , q = 2 , q > 2 , are analyzed.

Currently displaying 601 – 620 of 1682