The search session has expired. Please query the service again.
Displaying 921 –
940 of
17524
The goal of this paper is to construct a first-order upwind scheme for solving the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water fluids. This is done by generalizing a numerical scheme presented by Bermúdez and Vázquez-Cendón [3, 26, 27] for solving one-layer shallow water equations, consisting in a -scheme with a suitable treatment of the source terms. The difficulty in the two layer system comes from the coupling...
The goal of this paper is to construct a first-order upwind scheme
for solving the system of partial differential equations governing the
one-dimensional flow of two superposed immiscible layers of shallow water
fluids.
This is done by generalizing a numerical scheme presented by
Bermúdez and Vázquez-Cendón [3, 6, 27] for solving one-layer shallow water equations, consisting
in a Q-scheme with a suitable treatment of the source terms.
The difficulty in the two layer system comes from the coupling...
Let T be a semigroup of linear contractions on a Banach space X, and let . Then is the annihilator of the bounded trajectories of T*. If the unitary spectrum of T is countable, then is the annihilator of the unitary eigenvectors of T*, and for each x in X.
Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of hexahedral triangulations. As a result, standard efficient iterative solvers as...
Domain decomposition techniques provide a flexible tool for the numerical
approximation of partial differential equations. Here, we consider
mortar techniques for quadratic finite elements in 3D with
different Lagrange multiplier spaces.
In particular, we
focus on Lagrange multiplier spaces
which yield optimal discretization
schemes and a locally supported basis for the associated
constrained mortar spaces in case
of hexahedral triangulations. As a result,
standard efficient iterative solvers...
We consider a mathematical model of a quasistatic contact between an elastic body and an obstacle. The contact is modelled with unilateral constraint and normal compliance, associated to a version of Coulomb's law of dry friction where the coefficient of friction depends on the slip displacement. We present a weak formulation of the problem and establish an existence result. The proofs employ a time-discretization method, compactness and lower semicontinuity arguments.
Existence of a solution to the quasi-variational inequality problem arising in a model for sand surface evolution has been an open problem for a long time. Another long-standing open problem concerns determining the dual variable, the flux of sand pouring down the evolving sand surface, which is also of practical interest in a variety of applications of this model. Previously, these problems were solved for the special case in which the inequality is simply variational. Here, we introduce a regularized...
Let d > 0 be a positive real number and n ≥ 1 a positive integer and define the operator and its associated global maximal operator by
, f ∈ (ℝⁿ), x ∈ ℝⁿ, t ∈ ℝ,
, f ∈ (ℝⁿ), x ∈ ℝⁿ,
where f̂ is the Fourier transform of f and (ℝⁿ) is the Schwartz class of rapidly decreasing functions. If d = 2, is the solution to the initial value problem for the free Schrödinger equation (cf. (1.3) in this paper). We prove that for radial functions f ∈ (ℝⁿ), if n ≥ 3, 0 < d ≤ 2, and p ≥ 2n/(n-2), the...
Currently displaying 921 –
940 of
17524