Absence of Positive Eigenvalues in a Class of Multiparticle Quantum Systems.
A Carleson condition on the difference function for the coefficients of two elliptic-caloric operators is shown to give absolute continuity of one measure with respect to the other on the lateral boundary. The elliptic operators can have time dependent coefficients and only one of them is assumed to have a measure which is doubling. This theorem is an extension of a result of B. Dahlberg [4] on absolute continuity for elliptic measures to the case of the heat equation. The method of proof is an...
The lecture is devoted to the problem of absolute continuity of the spectrum of periodic operators. A general approach to this problem was suggested by L. Thomas in 1973 for the case of the Schrödinger operator with periodic electric potential. Further application of his method to concrete operators of mathematical physics met analytic difficulties. In recent years several new problems in this area have been solved. We propose a survey of known results in this area, including very recent, and formulate...
We study the discrete Schrödinger operator in with the surface quasi periodic potential , where . We first discuss a proof of the pure absolute continuity of the spectrum of on the interval (the spectrum of the discrete laplacian) in the case where the components of are rationally independent. Then we show that in this case the generalized eigenfunctions have the form of the “volume” waves, i.e. of the sum of the incident plane wave and reflected from the hyper-plane waves, the form...
We give an expository review of recent results obtained for elliptic equations having natural growth terms of absorption type and singular data. As a new result, we provide an application to the case of lower order terms of subcritical growth, proving a general solvability result with measure data for a class of equations modeled on (1.6).
This is an expanded version, enriched by references, of my inaugural speech held on November 7, 2001 at the Real Academia de Ciencas Exactas, Físicas y Naturales in Madrid. It explains in a nontechnical way, accessible to a general scientific community, some of the motivation and basic ideas of my research of the last twenty years on a functional-analytical approach to nonlinear parabolic problems.
An abstract parabolic equation with sectorial operator and continuous nonlinearity is studied in this paper. In particular, the asymptotic behavior of solutions is described within the framework of the theory of global attractors. Examples included in the final part of the paper illustrate the presented ideas.
We consider abstract parabolic problems in ordered Banach spaces and give conditions under which they have global attractors. Our approach is via comparison of solutions. Within this approach abstract comparison principles are obtained and bounds on the attractors are given by order intervals in Banach spaces. These results are applied to ordinary differential equations and to parabolic equations for which the main part is given by a sum of fractional powers of sectorial operators having increasing...
The Cauchy problem for a semilinear abstract parabolic equation is considered in a fractional power scale associated with a sectorial operator appearing in the linear main part of the equation. Existence of local solutions is proved for non-Lipschitz nonlinearities satisfying a certain critical growth condition.