On the Influence of Lower Order Terms for Propagation of Analytic Singularities for Operators with Constant Coefficients.
We consider higher order mixed finite element methods for the incompressible Stokes or Navier-Stokes equations with Qr-elements for the velocity and discontinuous -elements for the pressure where the order r can vary from element to element between 2 and a fixed bound . We prove the inf-sup condition uniformly with respect to the meshwidth h on general quadrilateral and hexahedral meshes with hanging nodes.
By deriving a variant of interpolation inequality, we obtain a sharp criterion for global existence and blow-up of solutions to the inhomogeneous nonlinear Schrödinger equation with harmonic potential We also prove the existence of unstable standing-wave solutions via blow-up under certain conditions on the unbounded inhomogeneity and the power of nonlinearity, as well as the frequency of the wave.
For an equation of the type of porous media equation the Cauchy-Dirichlet and Cauchy-Neumann problems are considered. The existence and uniqueness results in the case of initial and boundary data are given.
We consider the spatial behavior of the velocity field of a fluid filling the whole space () for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions under more general assumptions on the localization of . We also give some new examples of solutions which have a stronger spatial localization than in the generic case.
We consider the spatial behavior of the velocity field u(x, t) of a fluid filling the whole space () for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions under more general assumptions on the localization of u. We also give some new examples of solutions which have a stronger spatial localization than in the generic case.
We consider a nonnegative superbiharmonic function satisfying some growth condition near the boundary of the unit disk in the complex plane. We shall find an integral representation formula for in terms of the biharmonic Green function and a multiple of the Poisson kernel. This generalizes a Riesz-type formula already found by the author for superbihamonic functions satisfying the condition in the unit disk. As an application we shall see that the polynomials are dense in weighted Bergman...
The Povzner equation is a version of the nonlinear Boltzmann equation, in which the collision operator is mollified in the space variable. The existence of stationary solutions in is established for a class of stationary boundary-value problems in bounded domains with smooth boundaries, without convexity assumptions. The results are obtained for a general type of collision kernels with angular cutoff. Boundary conditions of the diffuse reflection type, as well as the given incoming profile, are...