Sub-supersolution theorems for quasilinear elliptic problems: A variational approach.
We study optimal control problems for partial differential equations (focusing on the multidimensional differential equation) with control functions in the Dirichlet boundary conditions under pointwise control (and we admit state - by assuming weak hypotheses) constraints.
Mathematics Subject Classification: 26A33 (main), 35A22, 78A25, 93A30The generalization of the concept of derivative to non-integer values goes back to the beginning of the theory of differential calculus. Nevertheless, its application in physics and engineering remained unexplored up to the last two decades. Recent research motivated the establishment of strategies taking advantage of the Fractional Calculus (FC) in the modeling and control of many phenomena. In fact, many classical engineering...
In the present paper we seek the bounce trajectories in a convex set which assume assigned positions in two fixed time instants. We find sufficient conditions in order to obtain the existence of infinitely many bounce trajectories.
Let be the boundary of the unit ball of . A set of second order linear partial differential operators, tangential to , is explicitly given in such a way that, for , the corresponding PDE caractherize the trace of the solution of the pluriharmonic problem (either “in the large” or “local”), relative to .