The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 7 of 7

Showing per page

Regularity of Lipschitz free boundaries for the thin one-phase problem

Daniela De Silva, Ovidiu Savin (2015)

Journal of the European Mathematical Society

We study regularity properties of the free boundary for the thin one-phase problem which consists of minimizing the energy functional E ( u , Ω ) = Ω | u | 2 d X + n ( { u > 0 } { x n + 1 = 0 } ) , Ω n + 1 , among all functions u 0 which are fixed on Ω .

Remarks on the theory of elasticity

Sergio Conti, Camillo de Lellis (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In compressible Neohookean elasticity one minimizes functionals which are composed by the sum of the L 2 norm of the deformation gradient and a nonlinear function of the determinant of the gradient. Non–interpenetrability of matter is then represented by additional invertibility conditions. An existence theory which includes a precise notion of invertibility and allows for cavitation was formulated by Müller and Spector in 1995. It applies, however, only if some L p -norm of the gradient with p > 2 is controlled...

Currently displaying 1 – 7 of 7

Page 1