The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, using the asymptotic expansion, we prove that the Reynolds lubrication equation is an approximation of the full Navier–Stokes equations in thin gap between two coaxial cylinders in relative motion. Boundary layer correctors are computed. The error estimate in terms of domain thickness for the asymptotic expansion is given. The corrector for classical Reynolds approximation is computed.
The paper deals with mathematical modelling of population genetics processes. The formulated model describes the random genetic drift. The fluctuations of gene frequency in consecutive generations are described in terms of a random walk. The position of a moving particle is interpreted as the state of the population expressed as the frequency of appearance of a specific gene. This leads to a continuous model on the microscopic level in the form of two first order differential equations (known as...
This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization...
This paper deals with the diffusion limit of a kinetic equation where the
collisions are modeled by a Lorentz type operator. The main aim is to construct a
discrete scheme to approximate this equation which gives for any value of the
Knudsen number, and in particular at the diffusive limit, the right discrete
diffusion equation with the same value of the diffusion coefficient as in the
continuous case. We are also naturally interested with a discretization which
can be used with few velocity discretization...
A large variety of complex
spatio-temporal patterns emerge from the processes occurring in
biological systems, one of them being the result of propagating
phenomena. This wave-like structures
can be modelled via reaction-diffusion equations. If a solution of
a reaction-diffusion equation represents a travelling wave, the
shape of the solution will be the same at all time and the speed
of propagation of this shape will be a constant. Travelling wave
solutions of reaction-diffusion systems have been...
Currently displaying 1 –
5 of
5