The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 7 of 7

Showing per page

Une classe de symboles new-look

André Hirschowitz (1980)

Annales de l'institut Fourier

On construit par voie géométrique une classe de symboles classiques en dehors d’une sous-variété. La classe d’opérateurs pseudodifférentiels associée contient les paramétrix d’opérateurs tels que i = 1 n - 1 x i 4 + x n 3 ou x n 3 + i = 1 n - 1 x i 2 .

Une inégalité de Gårding à bord

Frédéric Hérau (2000)

Journées équations aux dérivées partielles

The aim of this work is to give a Gårding inequality for pseudodifferential operators acting on functions in L 2 ( n ) supported in a closed regular region F n . A natural idea is to suppose that the symbol is non-negative in F × n . Assuming this, we show that this result is true for pseudo-differential operators of order one, when F is the half-space, and under a supplementary weak hypothesis of degeneracy of the symbol on the boundary.

Currently displaying 1 – 7 of 7

Page 1