The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let f be a C1 function defined over Rn and definable in a given o-minimal structure M expanding the real field. We prove here a gradient-like inequality at infinity in a neighborhood of an asymptotic critical value c. When f is C2 we use this inequality to discuss the trivialization by the gradient flow of f in a neighborhood of a regular asymptotic critical level.
Currently displaying 1 –
1 of
1