The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Sufficient conditions for the existence of a topological conjugacy between a cascade obtained from a weakly nonlinear flow by fixing the time step and a cascade obtained by the Euler method are analysed. The aim of this paper is to provide relations between constants in the Fečkan theorem. Given such relations an implementation of a weakly nonlinear neuron is possible.
We present a dynamic geometric model of phyllotaxis based on two postulates, primordia
formation and meristem expansion. We find that Fibonacci, Lucas, bijugate and multijugate
are all variations of the same unifying phenomenon and that the difference lies in the
changes in position of initial primordia. We explore the set of all initial positions and
color-code its points depending on the phyllotactic pattern that arises.
Phenotypic evolution of two-element populations with proportional selection and normally distributed mutation is considered. Trajectories of the expected location of the population in the space of population states are investigated. The expected location of the population generates a discrete dynamical system. The study of its fixed points, their stability and time to convergence is presented. Fixed points are located in the vicinity of optima and saddles. For large values of the standard deviation...
We propose a model of vascular tumour growth, which generalises the well recognised model formulated by Hahnfeldt et al. in 1999. Our model is based on the same idea that the carrying capacity for any solid tumour depends on its vessel density but it also incorporates vasculature quality which may be lost during angiogenesis as recognised by Jain in 2005. In the model we assume that the loss of vessel quality affects the diffusion coefficient inside the tumour. We analyse basic mathematical properties...
Currently displaying 1 –
13 of
13