Traveling front solutions for a diffusive epidemic model with external sources

Smaïl Djebali

Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)

  • Volume: 10, Issue: 2, page 271-292
  • ISSN: 0240-2963

How to cite

top

Djebali, Smaïl. "Traveling front solutions for a diffusive epidemic model with external sources." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.2 (2001): 271-292. <http://eudml.org/doc/73546>.

@article{Djebali2001,
author = {Djebali, Smaïl},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {topological degree; existence of traveling waves},
language = {eng},
number = {2},
pages = {271-292},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Traveling front solutions for a diffusive epidemic model with external sources},
url = {http://eudml.org/doc/73546},
volume = {10},
year = {2001},
}

TY - JOUR
AU - Djebali, Smaïl
TI - Traveling front solutions for a diffusive epidemic model with external sources
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 2
SP - 271
EP - 292
LA - eng
KW - topological degree; existence of traveling waves
UR - http://eudml.org/doc/73546
ER -

References

top
  1. [1] Aronson ( D.G.) & Weinberger ( H.F.). - Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. (1978), pp. 33-76. Zbl0407.92014
  2. [2] Bailey ( N.T.). - The Mathematical Theory of Infectious Diseases, Griffin, 1975. Zbl0334.92024MR452809
  3. [3] Berestycki ( H.), Nicolaenko ( B.) & Scheurer ( B.). - Traveling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., Vol. 16, No 6 (1985), pp. 1207-1242. Zbl0596.76096
  4. [4] Britton ( N.F.). - Reaction-Diffusion Equations and their Applications to Biology, Academic Press, 1986. Zbl0602.92001MR866143
  5. [5] Mottoni ( P. de), Orlandi ( E.) & Tesei ( A.). - Asymptotic behavior for a system describing epidemics with migration and spatial spread of infection, Nonlinear Analysis. Theory, Methods and Applications. Vol. 3 (1979), pp. 663-675. Zbl0416.35009
  6. [6] Djebali ( S.). - Traveling wave solutions to a reaction-diffusion system arising in epidemiology, Nonlinear Analysis: Real World Applications, Vol. 2, No 4 (2001), pp. 417-442. Zbl1017.92029MR1858897
  7. [7] Fife ( P.C.). - Mathematical Aspects of Reacting and Diffusing Systems, in Lecture Notes in Biomathematics, No 28, Springer Verlag, 1979. Zbl0403.92004MR527914
  8. [8] Hosono ( Y.) & Ilyas ( B.). - Traveling waves for a simple diffusive epidemic model, Math. Models and Meth. in Applied Sciences, Vol. 5, No 7 (1995), pp. 935-966. Zbl0836.92023
  9. [9] Kermack ( W.O.) & Mckendrick ( A.G.). - Contributions to the mathematical theory of epidemics, Pro. Roy. Soc., A115 (1927), pp. 700-721. JFM53.0517.01
  10. [10] Lloyd ( N.G.). - Degree Theory, Cambridge University Press, 1978. Zbl0367.47001MR493564
  11. [11] Marion ( M.). - Qualitative properties of a nonlinear system for laminar flames without ignition temperature, Nonlinear Analysis. Theory, Methods and Applications. Vol. 9, No 11 (1985), pp.1269-1292. Zbl0648.76051MR813658
  12. [12] Murray ( J.D.). - Mathematical Biology, Springer Verlag, 1989. Zbl0682.92001MR1007836
  13. [13] Pao ( C.V.). - On nonlinear reaction-diffusion systems, Journal of Mathematical Analysis and Applications, Vol. 87 (1982), pp. 165-198. Zbl0488.35043MR653613
  14. [14] Waltman ( P.). - Deterministic Threshold Models in the Theory of Epidemics, Lecture Notes in Biomathematics, Vol. 1, Springer-Verlag, Berlin, New York, 1974. Zbl0293.92015MR359874
  15. [15] Uchiyama ( K.). - The behaviour of some nonlinear diffusion equations for large time, J. Kyoto Univ., Vol. 18, (1978) pp. 453-508. Zbl0408.35053MR509494

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.