Traveling front solutions for a diffusive epidemic model with external sources
Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)
- Volume: 10, Issue: 2, page 271-292
- ISSN: 0240-2963
Access Full Article
topHow to cite
topDjebali, Smaïl. "Traveling front solutions for a diffusive epidemic model with external sources." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.2 (2001): 271-292. <http://eudml.org/doc/73546>.
@article{Djebali2001,
author = {Djebali, Smaïl},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {topological degree; existence of traveling waves},
language = {eng},
number = {2},
pages = {271-292},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Traveling front solutions for a diffusive epidemic model with external sources},
url = {http://eudml.org/doc/73546},
volume = {10},
year = {2001},
}
TY - JOUR
AU - Djebali, Smaïl
TI - Traveling front solutions for a diffusive epidemic model with external sources
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 2
SP - 271
EP - 292
LA - eng
KW - topological degree; existence of traveling waves
UR - http://eudml.org/doc/73546
ER -
References
top- [1] Aronson ( D.G.) & Weinberger ( H.F.). - Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. (1978), pp. 33-76. Zbl0407.92014
- [2] Bailey ( N.T.). - The Mathematical Theory of Infectious Diseases, Griffin, 1975. Zbl0334.92024MR452809
- [3] Berestycki ( H.), Nicolaenko ( B.) & Scheurer ( B.). - Traveling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., Vol. 16, No 6 (1985), pp. 1207-1242. Zbl0596.76096
- [4] Britton ( N.F.). - Reaction-Diffusion Equations and their Applications to Biology, Academic Press, 1986. Zbl0602.92001MR866143
- [5] Mottoni ( P. de), Orlandi ( E.) & Tesei ( A.). - Asymptotic behavior for a system describing epidemics with migration and spatial spread of infection, Nonlinear Analysis. Theory, Methods and Applications. Vol. 3 (1979), pp. 663-675. Zbl0416.35009
- [6] Djebali ( S.). - Traveling wave solutions to a reaction-diffusion system arising in epidemiology, Nonlinear Analysis: Real World Applications, Vol. 2, No 4 (2001), pp. 417-442. Zbl1017.92029MR1858897
- [7] Fife ( P.C.). - Mathematical Aspects of Reacting and Diffusing Systems, in Lecture Notes in Biomathematics, No 28, Springer Verlag, 1979. Zbl0403.92004MR527914
- [8] Hosono ( Y.) & Ilyas ( B.). - Traveling waves for a simple diffusive epidemic model, Math. Models and Meth. in Applied Sciences, Vol. 5, No 7 (1995), pp. 935-966. Zbl0836.92023
- [9] Kermack ( W.O.) & Mckendrick ( A.G.). - Contributions to the mathematical theory of epidemics, Pro. Roy. Soc., A115 (1927), pp. 700-721. JFM53.0517.01
- [10] Lloyd ( N.G.). - Degree Theory, Cambridge University Press, 1978. Zbl0367.47001MR493564
- [11] Marion ( M.). - Qualitative properties of a nonlinear system for laminar flames without ignition temperature, Nonlinear Analysis. Theory, Methods and Applications. Vol. 9, No 11 (1985), pp.1269-1292. Zbl0648.76051MR813658
- [12] Murray ( J.D.). - Mathematical Biology, Springer Verlag, 1989. Zbl0682.92001MR1007836
- [13] Pao ( C.V.). - On nonlinear reaction-diffusion systems, Journal of Mathematical Analysis and Applications, Vol. 87 (1982), pp. 165-198. Zbl0488.35043MR653613
- [14] Waltman ( P.). - Deterministic Threshold Models in the Theory of Epidemics, Lecture Notes in Biomathematics, Vol. 1, Springer-Verlag, Berlin, New York, 1974. Zbl0293.92015MR359874
- [15] Uchiyama ( K.). - The behaviour of some nonlinear diffusion equations for large time, J. Kyoto Univ., Vol. 18, (1978) pp. 453-508. Zbl0408.35053MR509494
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.