Displaying 501 – 520 of 726

Showing per page

On the helix equation

Mohamed Hmissi, Imene Ben Salah, Hajer Taouil (2012)

ESAIM: Proceedings

This paper is devoted to the helices processes, i.e. the solutions H : ℝ × Ω → ℝd, (t, ω) ↦ H(t, ω) of the helix equation H ( 0 ) = 0 ; H ( s + t,ω ) = H ( s, Φ ( t,ω ) ) + H ( t,ω ) where Φ : ℝ × Ω → Ω, (t, ω) ↦ Φ(t, ω) is a dynamical system on a measurable space (Ω, ℱ).More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation. For the last case, the Wiener helix plays a fundamental role. Moreover, some relations with the cocycle equation defined...

On the Heyde theorem for discrete Abelian groups

G. M. Feldman (2006)

Studia Mathematica

Let X be a countable discrete Abelian group, Aut(X) the set of automorphisms of X, and I(X) the set of idempotent distributions on X. Assume that α₁, α₂, β₁, β₂ ∈ Aut(X) satisfy β α - 1 ± β α - 1 A u t ( X ) . Let ξ₁, ξ₂ be independent random variables with values in X and distributions μ₁, μ₂. We prove that the symmetry of the conditional distribution of L₂ = β₁ξ₁ + β₂ξ₂ given L₁ = α₁ξ₁ + α₂ξ₂ implies that μ₁, μ₂ ∈ I(X) if and only if the group X contains no elements of order two. This theorem can be considered as an analogue...

On the increasing solutions of the translation equation

Janusz Brzdęk (1996)

Annales Polonici Mathematici

Let M be a non-empty set endowed with a dense linear order without the smallest and greatest elements. Let (G,+) be a group which has a non-trivial uniquely divisible subgroup. There are given conditions under which every solution F: M×G → M of the translation equation is of the form F ( a , x ) = f - 1 ( f ( a ) + c ( x ) ) for a ∈ M, x ∈ G with some non-trivial additive function c: G → ℝ and a strictly increasing function f: M → ℝ such that f(M) + c(G) ⊂ f(M). In particular, a problem of J. Tabor is solved.

On the inhomogeneous Cauchy functional equation.

István Fenyö, Gian Luigi Forti (1981)

Stochastica

In this note we solve the inhomogeneous Cauchy functional equation f(x+y) - f(x) - f(y) = d(x,y), x,y belonging to R, in the case where d is bounded.

On the inverse stability of functional equations

Zenon Moszner (2013)

Banach Center Publications

The inverse stability of functional equations is considered, i.e. when the function, approximating a solution of the equation, is an approximate solution of this equation.

Currently displaying 501 – 520 of 726