Displaying 661 – 680 of 726

Showing per page

Oscillation and global attractivity in a discrete survival red blood cells model

I. Kubiaczyk, S. H. Saker (2003)

Applicationes Mathematicae

We consider the discrete survival red blood cells model (*) N n + 1 - N = - δ N + P e - a N n - k , where δₙ and Pₙ are positive sequences. In the autonomous case we show that (*) has a unique positive steady state N*, we establish some sufficient conditions for oscillation of all positive solutions about N*, and when k = 1 we give a sufficient condition for N* to be globally asymptotically stable. In the nonatonomous case, assuming that there exists a positive solution Nₙ*, we present necessary and sufficient conditions for oscillation...

Oscillation and nonoscillation of second order neutral delay difference equations

Ethiraju Thandapani, K. Mahalingam (2003)

Czechoslovak Mathematical Journal

Some new oscillation and nonoscillation criteria for the second order neutral delay difference equation Δ ( c n Δ ( y n + p n y n - k ) ) + q n y n + 1 - m β = 0 , n n 0 where k , m are positive integers and β is a ratio of odd positive integers are established, under the condition n = n 0 1 c n < .

Oscillation conditions for difference equations with several variable arguments

George E. Chatzarakis, Takaŝi Kusano, Ioannis P. Stavroulakis (2015)

Mathematica Bohemica

Consider the difference equation Δ x ( n ) + i = 1 m p i ( n ) x ( τ i ( n ) ) = 0 , n 0 x ( n ) - i = 1 m p i ( n ) x ( σ i ( n ) ) = 0 , n 1 , where ( p i ( n ) ) , 1 i m are sequences of nonnegative real numbers, τ i ( n ) [ σ i ( n ) ], 1 i m are general retarded (advanced) arguments and Δ [ ] denotes the forward (backward) difference operator Δ x ( n ) = x ( n + 1 ) - x ( n ) [ x ( n ) = x ( n ) - x ( n - 1 ) ]. New oscillation criteria are established when the well-known oscillation conditions lim sup n i = 1 m j = τ ( n ) n p i ( j ) > 1 lim sup n i = 1 m j = n σ ( n ) p i ( j ) > 1 and lim inf n i = 1 m j = τ i ( n ) n - 1 p i ( j ) > 1 e lim inf n i = 1 m j = n + 1 σ i ( n ) p i ( j ) > 1 e are not satisfied. Here τ ( n ) = max 1 i m τ i ( n ) [ σ ...

Oscillation Criteria of Second-Order Quasi-Linear Neutral Delay Difference Equations

Thandapani, E., Pandian, S., Revathi, T. (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 39A10.The oscillatory and nonoscillatory behaviour of solutions of the second order quasi linear neutral delay difference equation Δ(an | Δ(xn+pnxn-τ)|α-1 Δ(xn+pnxn-τ) + qnf(xn-σ)g(Δxn) = 0 where n ∈ N(n0), α > 0, τ, σ are fixed non negative integers, {an}, {pn}, {qn} are real sequences and f and g real valued continuous functions are studied. Our results generalize and improve some known results of neutral delay difference equations.

Currently displaying 661 – 680 of 726