Jeden způsob sumace divergentních řad
We study a class of square functions in a general framework with applications to a variety of situations: samples along subsequences, averages of actions and of positive L¹ contractions. We also study the relationship between a counting function first introduced by Jamison, Orey and Pruitt, in a variety of situations, and the corresponding ergodic averages. We show that the maximal counting function is not dominated by the square functions.
Oresme est connu, entre autres choses, pour avoir développé dans ses Questions sur la Géométrie d’Euclide une « théorie des séries », incluant la nature et la sommation des séries géométriques ainsi que la divergence de la série harmonique. Dans le présent article on se propose de voir en quel sens Oresme a réellement développé une théorie des séries, en situant cette théorie dans le cadre des conceptions mathématiques médiévales. Cette théorie peut être vue comme un approfondissement mathématique...
A simpler proof is given for the recent result of I. Labuda and the author that a series in the space L0 (lambda) is subseries convergent if each of its lacunary subseries converges.
In this paper, the concept of lacunary equi-statistical convergence is introduced and it is shown that lacunary equi-statistical convergence lies between lacunary statistical pointwise and lacunary statistical uniform convergence. Inclusion relations between equi-statistical and lacunary equi-statistical convergence are investigated and it is proved that, under some conditions, lacunary equi-statistical convergence and equi-statistical convergence are equivalent to each other. A Korovkin type approximation...
The definition of lacunary strongly convergence is extended to the definition of lacunary strong -convergence with respect to invariant mean when is an infinite matrix and is a strictly positive sequence. We study some properties and inclusion relations.
The definition of lacunary strong convergence is extended to a definition of lacunary strong convergence with respect to a sequence of modulus functions in a Banach space. We study some connections between lacunary statistical convergence and lacunary strong convergence with respect to a sequence of modulus functions in a Banach space.
The aim of this work is to generalize lacunary statistical convergence to weak lacunary statistical convergence and -convergence to weak -convergence. We start by defining weak lacunary statistically convergent and weak lacunary Cauchy sequence. We find a connection between weak lacunary statistical convergence and weak statistical convergence.