Displaying 421 – 440 of 1168

Showing per page

Leibniz Series forπ

Karol Pąk (2016)

Formalized Mathematics

In this article we prove the Leibniz series for π which states that π4=∑n=0∞(−1)n2⋅n+1. π 4 = n = 0 - 1 n 2 · n + 1 . The formalization follows K. Knopp [8], [1] and [6]. Leibniz’s Series for Pi is item 26 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.

Limit points of arithmetic means of sequences in Banach spaces

Roman Lávička (2000)

Commentationes Mathematicae Universitatis Carolinae

We shall prove the following statements: Given a sequence { a n } n = 1 in a Banach space 𝐗 enjoying the weak Banach-Saks property, there is a subsequence (or a permutation) { b n } n = 1 of the sequence { a n } n = 1 such that lim n 1 n j = 1 n b j = a whenever a belongs to the closed convex hull of the set of weak limit points of { a n } n = 1 . In case 𝐗 has the Banach-Saks property and { a n } n = 1 is bounded the converse assertion holds too. A characterization of reflexive spaces in terms of limit points and cores of bounded sequences is also given. The motivation for the...

Limit points of eigenvalues of truncated unbounded tridiagonal operators

E.K. Ifantis, C.G. Kokologiannaki, E. Petropoulou (2007)

Open Mathematics

Let T be a self-adjoint tridiagonal operator in a Hilbert space H with the orthonormal basis {e n}n=1∞, σ(T) be the spectrum of T and Λ(T) be the set of all the limit points of eigenvalues of the truncated operator T N. We give sufficient conditions such that the spectrum of T is discrete and σ(T) = Λ(T) and we connect this problem with an old problem in analysis.

Lineární posloupnosti

Miroslav Laitoch (1968)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Local approximation properties of certain class of linear positive operators via I-convergence

Mehmet Özarslan, Hüseyin Aktuǧlu (2008)

Open Mathematics

In this study, we obtain a local approximation theorems for a certain family of positive linear operators via I-convergence by using the first and the second modulus of continuities and the elements of Lipschitz class functions. We also give an example to show that the classical Korovkin Theory does not work but the theory works in I-convergence sense.

Lower bound and upper bound of operators on block weighted sequence spaces

Rahmatollah Lashkaripour, Gholomraza Talebi (2012)

Czechoslovak Mathematical Journal

Let A = ( a n , k ) n , k 1 be a non-negative matrix. Denote by L v , p , q , F ( A ) the supremum of those L that satisfy the inequality A x v , q , F L x v , p , F , where x 0 and x l p ( v , F ) and also v = ( v n ) n = 1 is an increasing, non-negative sequence of real numbers. If p = q , we use L v , p , F ( A ) instead of L v , p , p , F ( A ) . In this paper we obtain a Hardy type formula for L v , p , q , F ( H μ ) , where H μ is a Hausdorff matrix and 0 < q p 1 . Another purpose of this paper is to establish a lower bound for A W N M v , p , F , where A W N M is the Nörlund matrix associated with the sequence W = { w n } n = 1 and 1 < p < . Our results generalize some works of Bennett, Jameson and present authors....

Marcinkiewicz multipliers of higher variation and summability of operator-valued Fourier series

Earl Berkson (2014)

Studia Mathematica

Let f V r ( ) r ( ) , where, for 1 ≤ r < ∞, V r ( ) (resp., r ( ) ) denotes the class of functions (resp., bounded functions) g: → ℂ such that g has bounded r-variation (resp., uniformly bounded r-variations) on (resp., on the dyadic arcs of ). In the author’s recent article [New York J. Math. 17 (2011)] it was shown that if is a super-reflexive space, and E(·): ℝ → () is the spectral decomposition of a trigonometrically well-bounded operator U ∈ (), then over a suitable non-void open interval of r-values, the condition...

Matrix characterization of oscillation for double sequences

Richard Patterson, Jeff Connor, Jeannette Kline (2008)

Open Mathematics

The notion of oscillation for ordinary sequences was presented by Hurwitz in 1930. Using this notion Agnew and Hurwitz presented regular matrix characterization of the resulting sequence space. The primary goal of this article is to extend this definition to double sequences, which grants us the following definition: the double oscillation of a double sequence of real or complex number is given P-lim sup(m,n)→∞;(α,β)→∞|S m,n-S α,β|. Using this concept a matrix characterization of double oscillation...

Currently displaying 421 – 440 of 1168