The search session has expired. Please query the service again.
We consider processes Xₜ with values in and “time” index t in a subset A of the unit cube. A natural condition of boundedness of increments is assumed. We give a full characterization of the domains A for which all such processes are a.e. continuous. We use the notion of Talagrand’s majorizing measure as well as geometrical Paszkiewicz-type characteristics of the set A. A majorizing measure is constructed.
The notion of -convergence of a sequence of functions is stronger than pointwise convergence and weaker than uniform convergence. It is inspired by the investigation of ill-posed problems done by A.N. Tichonov. We answer a question posed by M. Katětov around 1970 by showing that the only analytic metric spaces for which pointwise convergence of a sequence of continuous real valued functions to a (continuous) limit function on implies -convergence are -compact spaces. We show that the assumption...
We consider ideal equal convergence of a sequence of functions. This is a generalization of equal convergence introduced by Császár and Laczkovich [Császár Á., Laczkovich M., Discrete and equal convergence, Studia Sci. Math. Hungar., 1975, 10(3–4), 463–472]. Our definition of ideal equal convergence encompasses two different kinds of ideal equal convergence introduced in [Das P., Dutta S., Pal S.K., On and *-equal convergence and an Egoroff-type theorem, Mat. Vesnik, 2014, 66(2), 165–177]_and [Filipów...
Let I ⊆ P(ω) be an ideal. We continue our investigation of the class of spaces with the I-ideal convergence property, denoted (I). We show that if I is an analytic, non-countably generated P-ideal then (I) ⊆ s₀. If in addition I is non-pathological and not isomorphic to , then (I) spaces have measure zero. We also present a characterization of the (I) spaces using clopen covers.
A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which imply mean-square convergence of generalized polynomial chaos expansions to the correct limit and complement...
A number of approaches for discretizing partial differential equations with random data
are based on generalized polynomial chaos expansions of random variables. These constitute
generalizations of the polynomial chaos expansions introduced by Norbert Wiener to
expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We
present conditions on such measures which imply mean-square convergence of generalized
polynomial...
For any Borel ideal ℐ we describe the ℐ-Baire system generated by the family of quasi-continuous real-valued functions. We characterize the Borel ideals ℐ for which the ideal and ordinary Baire systems coincide.
If is a sequence of real numbers which is good for the ergodic theorem, is the sequence of the integer parts good for the ergodic theorem ? The answer is negative for the mean ergodic theorem and affirmative for the pointwise ergodic theorem.
In the present paper we consider a new class of sequences called GM(β,r), which is the generalization of a class defined by Tikhonov in [15]. We obtain sufficient and necessary conditions for uniform convergence of weighted trigonometric series with (β,r)-general monotone coefficients.
A general concept of two-scale convergence is introduced and two-scale compactness theorems are stated and proved for some classes of sequences of bounded functions in involving no periodicity assumptions. Further, the relation to the classical notion of compensated compactness and the recent concepts of two-scale compensated compactness and unfolding is discussed and a defect measure for two-scale convergence is introduced.
Currently displaying 1 –
18 of
18