Algorithms for Computing Shape Preserving Spline Approximations to Data.
We investigate almost ball remotal and ball remotal subspaces of Banach spaces. Several subspaces of the classical Banach spaces are identified having these properties. Some stability results for these properties are also proved.
We present an algorithm to generate a smooth curve interpolating a set of data on an -dimensional ellipsoid, which is given in closed form. This is inspired by an algorithm based on a rolling and wrapping technique, described in [11] for data on a general manifold embedded in Euclidean space. Since the ellipsoid can be embedded in an Euclidean space, this algorithm can be implemented, at least theoretically. However, one of the basic steps of that algorithm consists in rolling the ellipsoid, over...
The paper deals with the computation of suitably chosen parameters of a biparabolic spline (ot the tensor product type) on a rectangular domain. Some possibilities of choosing such local parameters (concentrated, dispersed parameters) are discussed. The algorithms for computation of dispersed parameters (using the first derivative representation) and concentraced parameters (using the second derivative representation) are given. Both these algorithms repeatedly use the one-dimensional algorithms....
For sequences of rational functions, analytic in some domain, a theorem of Montel’s type is proved. As an application, sequences of rational functions of the best -approximation with an unbounded number of finite poles are considered.