Error Bounds for the Approximation of Green's Kernels by Splines.
Interest in meshfree methods in solving boundary-value problems has grown rapidly in recent years. A meshless method that has attracted considerable interest in the community of computational mechanics is built around the idea of modified local Shepard’s partition of unity. For these kinds of applications it is fundamental to analyze the order of the approximation in the context of Sobolev spaces. In this paper, we study two different techniques for building modified local Shepard’s formulas, and...
Interest in meshfree methods in solving boundary-value problems has grown rapidly in recent years. A meshless method that has attracted considerable interest in the community of computational mechanics is built around the idea of modified local Shepard's partition of unity. For these kinds of applications it is fundamental to analyze the order of the approximation in the context of Sobolev spaces. In this paper, we study two different techniques for building modified local Shepard's formulas, and...
In this paper we derive a priori error estimates for linear-quadratic elliptic optimal control problems with finite dimensional control space and state constraints in the whole domain, which can be written as semi-infinite optimization problems. Numerical experiments are conducted to ilustrate our theory.
We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave in terms of spherical harmonics . We consider the truncated series where the summation is performed over the ’s satisfying . We prove that if is large enough, the truncated series gives rise to an error lower than as soon as satisfies where is the Lambert function and are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results...
We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation, , which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices . We prove that if is large enough, the truncated series gives rise to an error lower than as soon as satisfies where is the Lambert function, depends only on and are...
We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation, , which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices . We prove that if is large enough, the truncated series gives rise to an error lower than ϵ as soon as L satisfies where W is the Lambert function, depends only on...
We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave in terms of spherical harmonics . We consider the truncated series where the summation is performed over the 's satisfying . We prove that if is large enough, the truncated series gives rise to an error lower than ϵ as soon as L satisfies where W is the Lambert function and are pure positive constants. Numerical experiments show that this asymptotic is...