Evaluation of the Fermi-Dirac integral of half-integer order
We obtain some approximate identities whose accuracy depends on the bottom of the discrete spectrum of the Laplace-Beltrami operator in the automorphic setting and on the symmetries of the corresponding Maass wave forms. From the geometric point of view, the underlying Riemann surfaces are classical modular curves and Shimura curves.
We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains , . We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in , comprising the countably-normed spaces of I. M. Babuška and B. Q. Guo. As intermediate result, we prove that continuous, piecewise polynomial high...
We are given data α₁,..., αₘ and a set of points E = x₁,...,xₘ. We address the question of conditions ensuring the existence of a function f satisfying the interpolation conditions , i = 1,...,m, that is also n-convex on a set properly containing E. We consider both one-point extensions of E, and extensions to all of ℝ. We also determine bounds on the n-convex functions satisfying the above interpolation conditions.
We suggest a modification of the Pawłucki and Pleśniak method to construct a continuous linear extension operator by means of interpolation polynomials. As an illustration we present explicitly the extension operator for the space of Whitney functions given on the Cantor ternary set.