The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1441 –
1460 of
2610
We present here a new method for approximating functions defined on superreflexive Banach spaces by differentiable functions with α-Hölder derivatives (for some 0 < α≤ 1). The smooth approximation is given by means of an explicit formula enjoying good properties from the minimization point of view. For instance, for any function f which is bounded below and uniformly continuous on bounded sets this formula gives a sequence of Δ-convex functions converging to f uniformly on bounded sets and...
* The author was supported by NSF Grant No. DMS 9706883.Let P be a bi-variate algebraic polynomial of degree n with the
real senior part, and Y = {yj }1,n an n-element collection of pairwise
noncolinear unit vectors on the real plane. It is proved that there exists a rigid
rotation Y^φ of Y by an angle φ = φ(P, Y ) ∈ [0, π/n] such that P equals the
sum of n plane wave polynomials, that propagate in the directions ∈ Y^φ .
We consider triangulations formed by triangular elements. For the standard linear interpolation operator we prove the interpolation order to be for provided the corresponding family of triangulations is only semiregular. In such a case the well-known Zlámal’s condition upon the minimum angle need not be satisfied.
We give a generalization of box splines. We prove some of their properties and we give applications to interpolation and approximation of functions.
Currently displaying 1441 –
1460 of
2610